Skip to content Skip to navigation


BIOE 209 / CME 209: Mathematical Modeling of Biological Systems 

The course covers mathematical and computational techniques needed to solve advanced problems encountered in applied bioengineering. Fundamental concepts are presented in the context of their application to biological and physiological problems including cancer, cardiovascular disease, infectious disease, and systems biology. Topics include Taylor's Series expansions, parameter estimation, regression, nonlinear equations, linear systems, optimization, numerical differentiation and integration, stochastic methods, ordinary differential equations and Fourier series. Python, Matlab and other software will be used for weekly assignments and projects.

CME 108 / MATH 114: Introduction to Scientific Computing

Introduction to Scientific Computing Numerical computation for mathematical, computational, physical sciences and engineering: error analysis, floating-point arithmetic, nonlinear equations, numerical solution of systems of algebraic equations, banded matrices, least squares, unconstrained optimization, polynomial interpolation, numerical differentiation and integration, numerical solution of ordinary differential equations, truncation error, numerical stability for time dependent problems and stiffness. Implementation of numerical methods in MATLAB programming assignments.

CME 206 / ME 300C: Introduction to Numerical Methods for Engineering

Numerical methods from a user's point of view. Lagrange interpolation, splines. Integration: trapezoid, Romberg, Gauss, adaptive quadature; numerical solution of ordinary differential equations: explicit and implicit methods, multistep methods, Runge-Kutta and predictor-corrector methods, boundary value problems, eigenvalue problems; systems of differential equations, stiffness. Emphasis is on analysis of numerical methods for accuracy, stability, and convergence. Introduction to numerical solutions of partial differential equations; Von Neumann stability analysis; alternation directioni implicity methods and nonlinear equations.

BIOE / CME / ME 285: Computational Modeling in the Cardiovascular System 

This course introduces computational modeling methods for cardiovascular blood flow and physiology. Topics in this course include analytical and computational methods for solutions of flow in deformable vessels, one-dimensional equations of blood flow, cardiovascular anatomy, lumped parameter models, vascular trees, scaling laws, biomechanics of the circulatory system, and 3D patient specific modeling with finite elements; course will provide an overview of the diagnosis and treatment of adult and congenital cardiovascular diseases and review recent research in the literature in a journal club format. Students will use SimVascular software to do clinically-oriented projects in patient specific blood flow simulations.

View Explore Courses